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Abstract

We have compiled time-series concentration data for the biological reduction of manganese(III/IV) published between
1985 and 2004 and fit these data with a simple hyperbolic rate expression or, when appropriate, one of its limiting forms.
The compiled data and rate constants are available in Electronic Annex EA-1. The zero- and first-order rate constants appear
to follow a log–normal distribution that could be used, for example, in predictive modeling of Mn-oxide reduction in a reac-
tive transport scenario. We have also included details of the experimental procedures used to generate each time-series data-
set in our compilation. These meta-data—mostly pertaining to the type and concentration of micro-organism, electron donor,
and electron acceptor—enable us to examine the rate data for trends. We have computed a number of rudimentary, mono-
variate statistics on the compiled data with the hope of stimulating both more detailed statistical analyses of the data and new
experiments to fill gaps in the existing data-set. We have also analyzed the data with parametric models based on the log–
normal distribution and rate equations that are hyperbolic in the concentration of cells and Mn available for reduction. This
parametric analysis allows us to provide best estimates of zero- and first-order rate constants both ignoring and accounting for
the meta-data.
� 2010 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Over the past few decades a number of studies have re-
ported on the bacterially mediated reduction of Mn(III/IV)
to Mn(II). Many of these studies have included time-series
Mn concentration data collected in batch reactors such as
the data shown in Fig. 1 (Burdige and Nealson, 1985;
Lovley and Phillips, 1988; Myers and Nealson, 1988a,b;
Rusin et al., 1991; Burdige et al., 1992; Kostka et al.,
1995; Greene et al., 1997; Bratina et al., 1998; Kieft et al.,
1999; Fredrickson et al., 2002, 2004). The conditions under
which these experiments were conducted are summarized in
Table 1. Several time-series data-sets are typically collected
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with an experimental condition varied systematically
among them. Mechanistic conclusions are then inferred
from observed differences (or lack thereof) in the reaction
rate. In only a few of these studies, however, have the
time-series data been analyzed with any sort of kinetic
model (e.g., Burdige and Nealson, 1985; Burdige et al.,
1992). Despite this lack of kinetic analysis within and
between research studies, several geochemical models now
provide algorithms that can be used to model the kinetics
of dissimilatory Mn reduction in field settings.

While a great deal of information—especially concern-
ing reaction mechanisms—has already been gained from
qualitative analyses of rate data, it is likely that still more
information can be gained from a quantitative approach.
In particular, the time-series data should contain the infor-
mation needed to estimate zero- and first-order rate con-
stants which are needed for predictive modeling (e.g.,
with a reactive transport code) of bacterial Mn reduction

http://dx.doi.org/10.1016/j.gca.2010.04.069
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Fig. 1. An example concentration time-series data-set taken from
Fig. 4 of Burdige et al. (1992).
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rates in the environment. Furthermore, the presence or lack
of a quantitatively established trend in rate data as a func-
tion of experimental inputs (e.g., concentration of cells, Mn
available for reduction, electron donor concentration)
should be useful in further establishing or challenging the
conclusions of previous studies.

In order to perform the kind of comprehensive quantita-
tive analysis described above, it is first necessary to gather
the relevant time-series data in a consistent format. We
have done this according to the procedure described in Sec-
tion 2 and have provided these compiled data in Electronic
Annex EA-1. We expect that the compilation will prove to
be a particularly useful part of this work since it will enable
other researchers to perform their own analyses and to add
to the knowledge base for this system in a way that ac-
counts for the existing data. It should be noted that several
of the studies in the compilation used inhibitor compounds
in some of their experiments. We have included these data
in Electronic Annex, but have excluded them from all of the
graphs and statistical analyses described below.

The problem presented by bacterial Mn reduction is pro-
totypical of environmental kinetics as a whole in that exist-
ing (and generally high quality) laboratory based rate
measurements are used to predict the behavior of natural
systems. Recently, data compilation and “meta-analysis”

have been employed as a means of solving this scaling prob-
lem (Olsen and Rimstidt, 2007; Brantley et al., 2008). It re-
mains to be seen, however, if this approach can produce
coherent results across the wide spectrum of environmental
systems. In this light, the present work can be considered as
a datum on the utility of data compilation.

2. METHODS

2.1. Data and meta-data harvesting

Our compilation includes data from studies of bacterial
manganese reduction that reported metal concentration as
a function of time. In most studies, time-series data were re-
ported graphically. We used the extraction software Grab-
It to digitize the data (Datatrend Software; Raleigh, NC).
We have also included information about experimental
conditions employed in each study, which are referred to
henceforth as meta-data. We wish to stress that no tabular
compilation of meta-data can replace journal length publi-
cations describing the data. The most important piece of
meta-data, therefore, is the citation to the original journal
article.

There are two kinds of meta-data in our compilation:
categorical meta-data and quantitative meta-data. Categor-
ical meta-data are those data that describe the type of
experiment or type of reagent used. These data are descrip-
tions rather than numerical values. Quantitative meta-data
are those data that take numerical values. These data de-
scribe the degree of an experimental condition or the
amount of reagent used.

The extracted time-series data and their relevant meta-
data are provided in Table EA-1-1 of Electronic Annex.

2.2. Curve fitting

Almost all of the data in our compilation depict the
appearance of reduced products over time and, therefore,
we present our analysis methods in terms of the kinetics
of Mn(II) appearance. In those few cases where data were
reported that describe decreasing Mn(III/IV) concentra-
tions, we followed the same basic procedures but with “dis-
appearance” rate laws substituted for the “appearance” rate
laws.

All of the data possessed one or more of the following
features: (i) a lag period during which concentration re-
mained constant; (ii) a linear increase in concentration over
time; or (iii) an exponential approach to a horizontal
asymptote. Considering a metal reduction reaction written
generically as Mox ? Mred we can formulate a rate equation
that mimics all three of these features as follows:

d½Mred �
dt

¼
0 t < tlag

V max ½Mox �
K1=2þ½Mox� t P tlag

(
ð1Þ

½Mox� þ ½Mred � ¼ ½Mox�0 þ ½Mred �0 ¼ ½Mtot� ð2Þ

where [Mred] and [Mox] are, respectively, concentrations of
the reduced and oxidized metal over time; [Mred]0 and
[Mox]0 are initial concentrations; [Mtot] is a constant; Vmax

and K1/2 are rate parameters with dimensions of concentra-
tion per time and concentration, respectively; and tlag is the
length of the lag period. We refer to Eq. (1) as the mixed-
order model because it contains a transition from behavior
that is zero-order in nature at high [Mox] to behavior that is
first-order in nature at low [Mox].

Not all of the data exhibited each of the three features
described above. Some of the data exhibited an induction
period and a linear increase in concentration (features (i)
and (ii)) but no exponential asymptote (feature (iii)). A rate
equation mimicking these features can be written as:

d½Mred �
dt

¼
0 t < tlag

kzo t P tlag

�
ð3Þ



Table 1
Summary of data-sets included in compilation.

Reference No.
of
data-
sets

Microbe [Cells]
(L�1)

Electron
acceptor

[Mn]total

(M)
Electron
donor

[Donor]
(mM)

Initial rate
(mM h�1)

Bratina et al. (1998) 4 Microbes concentrated from water Birnessite 0.0023 None, peptone and
yeast extract

3.78e�05–
0.00575

Burdige et al. (1992) 22 Chesapeake Bay enrichment culture 9 � 108 Vernadite, birnessite,
pyrolusite

0.000115–
0.0023

Acetate 0.015 1.78e�05–
0.0288

Burdige and Nealson
(1985)

19 Enrichment cultures Vernadite 0.00115–
0.00575

Lactate, succinate 0.000196–
0.0463

Fredrickson et al. (2002) 11 Shewanella putrefaciens CN32 3 � 1011 Pyrolusite, birnessite,
sediments, mixed metals

0.02–
0.0501

Hydrogen gas 0.00667–
0.382

Fredrickson et al. (2004) 3 Shewanella putrefaciens CN32 8 � 1010 Sediments 0.00417–
0.0235

Lactate 0.01 0.0207–
0.0239

Greene et al. (1997) 1 Deferribacter thermophilus BMA 4 � 107 Vernadite 0.015 Yeast extract 0.283
Kieft et al. (1999) 2 Thermus SA-01 1 � 1012 Birnessite 0.01 Lactate, hydrogen

gas
0.002 0.0230–

0.0405
Kostka et al. (1995) 14 Shewanella putrefaciens MR-1 1 � 1010 Aqueous Mn(III) 0.04 Formate, lactate,

hydrogen gas
0.005–
0.01

0.00418–
0.695

Lovley and Phillips (1988) 1 Geobacter metallireducens GS-15 1 � 1010 Birnessite 0.015 Acetate 0.001 0.236
Myers and Nealson
(1988a)

19 Shewanella oneidensis MR-1 8 � 109 MnO2, MnO2 and Fe oxide 0.0002–
0.000215

Succinate 0.015 0.0015–
0.0346

Myers and Nealson
(1988b)

10 Shewanella oneidensis MR-1 9 � 108–
2 � 1010

MnO2 0.0002 Succinate 0.015 0.00142–
0.00842

Rusin et al. (1991) 3 Bacillus polymyxa D1, Shewanella oneidensis MR-1,
Shewanella putrefaciens sp. 200

Pyrolusite 0.04 Glucose, lactate 0.01 0.0136–
0.148
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where kzo is a rate parameter with dimensions of concentra-
tion per time. We refer to Eq. (3) as the zero-order model.
Other data exhibited an induction period and an asymptote
(features (i) and (iii)) but no linear increase (feature (ii));
behavior which is mimicked by:

d½Mred �
dt

¼
0 t < tlag

kfo½Mox� t P tlag

�
ð4Þ

where kfo is a rate parameter with dimensions of per time.
We refer to Eq. (4) as the first-order model. Of course, some
of the data did not exhibit an induction period. Such behav-
ior can be mimicked with any of Eqs. (1), (3), or (4) by set-
ting tlag to zero.

We fit the integrated forms of the mixed-, zero-, and
first-order models to the appropriate data by means of
square error minimization either analytically—for linear
parameters—or using the Levenberg–Marquardt algorithm
(Press et al., 1992). Direct integration of the mixed-order
model yields an implicit solution such that least-squares fit-
ting requires the additional step of numerical inversion. For
this we used Brent’s method (Brent, 1973). Many of the
data-sets could be fit with two or even all three of the mod-
els. Data that are purely first-order, for example, can al-
ways be fit with the mixed-order model by making
appropriately large choices for Vmax and K1/2 (Agrawal
et al., 2002). In such cases we chose the best model by cal-
culating the reduced sum of square errors according to:

SSEred ¼
SSE

N �M
ð5Þ

where SSE is the sum of square errors between the fitted
model and the data, N is the number of data points, and
M is the number of free parameters (N �M is the degrees
of freedom). We then chose the model with the least SSEred

as the best model for the data. We treated the existence of a
lag period (i.e., whether to hold tlag at zero) and the selec-
tion of initial conditions (i.e., whether to calculate [Mred]0
a priori or to treat it as a fitting parameter) according to
the same procedure. We estimated confidence intervals on
fitted parameters from the covariance matrix assuming that
the errors were normally distributed and homoscedastic
(Seber and Wild, 2003).

We would ultimately like to calculate a rate that is con-
sistent across data-sets even when the data were best fit by
different models. Since the rate constants cannot be used for
this purpose, we used the rate of the fitted model at the end
of the lag period (i.e., the initial rate):

ratejtlag
¼

kzo zero-order

kfoð½Mtot� � ½Mred �j0Þ first-order
V maxð½Mtot ��½Mred �j0Þ

K1=2þð½Mtot ��½Mred �j0Þ
mixed-order

8><
>: ð6Þ

Confidence intervals for the rate evaluated at tlag can be
approximated by expanding Eq. (6) into the first two terms
of a Taylor series around the mean values of the parameters
and inserting this expression into the definition of variance.
This gives an expression for the variance on the rate at tlag

in terms of the fitted parameters and their covariance
matrix. In the zero-order case, the confidence interval on
rate at time = tlag is simply equal to that on kzo.

The resulting fitting parameters, covariance elements,
and relevant meta-data have been compiled in Table EA-
1-2 of Electronic Annex.

2.3. Statistical analyses

There are two kinds of output issuing from the curve fit-
ting procedure: quantitative fitting parameters (together
with associated uncertainties) and the model type that
achieved the best fit. Each output variable, whether quanti-
tative or categorical, possesses a distribution and these dis-
tributions are controlled, at least partially, by correlative
distributions in the meta-data. In performing statistical
analyses we are concerned, first, with describing the distri-
butions of the output data and, second, with exploring
correlations that exist between the output data and the
meta-data. Since our meta-data also consist of both cate-
gorical and quantitative data, we require the means to sum-
marize both types of data as well as measures of association
between two categorical variables, between a categorical
and a quantitative variable, and between two quantitative
variables. Throughout our statistical analyses we have
excluded those data where an inhibiting species was present.

The distribution of a categorical variable is fully described
by the number of instances falling into each category. A con-
venient way to summarize this type of distribution is the con-
tingency table—such as Tables 2 and 4—where the rows and
columns are labeled by two different categorical variables and
the entries give the number of observed events for each row/
column combination. The contingency table also forms the
basis for our method of assessing the degree of association be-
tween two categorical variables. If there is no association, the
contingency table will be populated at random. If there is an
association, some pattern should be evident in the contin-
gency table. The v2 statistic, given by Eq. (7), measures the
statistical strength of the pattern in a contingency table.

v2 ¼
X

i;j

ðN i;j � ni;jÞ2

ni;j
ð7Þ

Ni,j is the number of observations in row i and column j of
the contingency table and ni,j is the expected number of
observations at location i, j based on a null hypothesis of
no association between the variables (i.e., ni;j ¼

P
jN i;j�P

iN i;j �
P

i;jN i;j). A larger value of v2 corresponds to a
greater deviation from a random distribution of entries in
the contingency table. The statistical significance of a given
value of v2 can be found using the complement of the
incomplete gamma function with degrees of freedom equal
to I�J � I � J + 1 where I and J are the number of rows
and columns, respectively (Press et al., 1992). The statistical
significance found in this way can be interpreted as the
probability that v2 would be greater than that observed un-
der random distribution of the entries. Small values indi-
cate, therefore, a significant association between the
category variables.

The v2 statistic measures the significance of an associa-
tion but not the strength of that association. For this



Table 2
Contingencies between model type and categorical meta-data.

Zero-order, no
lag

Zero-order, with
lag

First-order, no
lag

First-order, with
lag

Mixed-order, no
lag

Total

Micro-organism Shewanella 11 12 7 4 10 44
Enrichment
culture

2 11 0 9 0 22

Other 2 1 2 0 0 5

Donor Hydrogen 7 0 5 0 0 12
Acetate 0 9 1 8 0 18
Lactate 2 4 2 2 3 13
Succinate 5 10 0 3 3 21
Formate 0 0 0 0 2 2
Other 1 1 1 0 2 5

Acceptor Solid Mn 7 20 0 11 1 39
Aqueous Mn 1 0 0 0 6 7
Other + Mn 7 4 9 2 3 25

Extraction
method

HCl 3 11 9 8 1 32
CuSO4 10 6 0 5 3 24
Other 1 1 0 0 6 8
None 1 6 0 0 0 7

Total 15 24 9 13 10 71

Table 3
v2 and mutual information calculations for several model-type/
categorical meta-data pairs.

Meta-data Partition of
model type

v2 Stat. sig. U(y|x)

Micro-organism Model 26.5 8.5 � 10�4 0.14
Lag 19.7 5.3 � 10�5 0.23
Order 7.62 1.1 � 10�1 0.08
Plateau 0.331 8.5 � 10�1 0.003

Donor Model 60.2 6.7 � 10�6 0.30
Lag 31.2 8.5 � 10�6 0.40
Order 25.7 4.1 � 10�3 0.18
Plateau 5.83 3.2 � 10�1 0.07

Acceptor Model 59.8 5.2 � 10�10 0.25
Lag 27.2 1.2 � 10�6 0.32
Order 37.0 1.8 � 10�7 0.20
Plateau 9.10 1.1 � 10�2 0.10

Extraction method Model 53.9 2.8 � 10�7 0.23
Lag 9.25 2.6 � 10�2 0.10
Order 40.6 3.5 � 10�7 0.26
Plateau 11.6 8.9 � 10�3 0.15

Reference Model 123 1.8 � 10�9 0.55
Lag 53.3 1.6 � 10�7 0.72
Order 55.6 9.8 � 10�5 0.40
Plateau 19.7 5.0 � 10�2 0.26
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purpose, we use the uncertainty coefficient, U(y|x), calcu-
lated from information theoretic entropies. Let x and y de-
note categorical variables that head, respectively, the rows
and columns of a contingency table. Letting N denote the
total number of observations in the table, the following
entropies can be defined:
HðyÞ ¼ �
X

j

P
iN i;j

N
ln

P
iN i;j

N

� �
ð8Þ

HðyjxÞ ¼ �
X

i;j

N i;j

N
ln

N i;jP
jN i;j

 !
ð9Þ

H(y) is the entropy of the distribution on the category var-
iable, y, without taking into account knowledge of the cat-
egory variable, x, and H(y|x) is the entropy with knowledge
of x taken into account; therefore, H(y) is always greater
than H(y|x). The uncertainty coefficient is defined as the
fractional difference between H(y) and H(y|x):

UðyjxÞ ¼ HðyjxÞ � HðyÞ
HðyÞ ð10Þ

U(y|x) is the fraction of y’s entropy that is lost when x is
known. When U(y|x) = 0, none of y’s entropy is lost so
there is no relationship between x and y. When
U(y|x) = 1, all of y’s entropy is lost and, therefore, knowl-
edge of x completely determines y (which is the strongest
possible association between two variables).

The means of summarizing a quantitative variable are
well known. In graphic terms, we have chosen to focus on
cumulative distributions rather than histograms because
the plot of a cumulative distribution is more sensitive to
the goodness-of-fit between data and a proposed paramet-
ric distribution. Common summary statistics are the mean,
standard deviation, and median which we denote as larith,
rarith, and xmed. It is important to distinguish arithmetic
mean and standard deviation as arithmetic because we will
presently make use of the log–normal distribution. The
probability density and cumulative distribution functions
for the log–normal are given as follows:



Table 4
Contingencies between model type and quantitative meta-data.

Zero-order, no
lag

Zero-order, with
lag

First-order, no
lag

First-order, with
lag

Mixed-order, no
lag

Total

[Cells] (L�1) 3.5 � 107–4 � 107 1 1 0 0 0 5
9.33 � 108–
9.33 � 108

0 4 0 2 0 6

1.87 � 109–8 � 109 3 6 0 2 3 27
1 � 1010–8 � 1010 2 0 3 0 7 19
3 � 1011–3 � 1011 6 0 5 0 0 11
1 � 1012–1 � 1012 2 0 0 0 0 2

[Donor] (mM) 0–0.005 2 0 1 0 3 7
0.01–0.01 1 2 3 0 2 15
0.015–0.015 4 16 0 10 3 51

[Mn]total (mM) 1.15 � 10�4–2x10�4 0 7 0 1 0 23
2.15 � 10�4–
5.75 � 10�4

0 7 0 9 3 26

1.15 � 10�3–
5.75 � 10�3

2 7 1 3 0 26

0.01–0.0501 9 3 8 0 7 34

Surface area
(m2 L�1)

0.0085–4.51 0 7 5 6 0 23
9.02–54 2 6 0 3 0 24
83.346–3220 8 0 3 0 2 13
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pðxÞ ¼ 1

x � rln �
ffiffiffiffiffiffi
2p
p exp �ðlnðxÞ � llnÞ

2

r2
ln

 !
ð11Þ

pðX 6 xÞ ¼ 1

2
þ 1

2
erf

lnðxÞ � lln

rln �
ffiffiffi
2
p

� �
ð12Þ

where erf is the error function. Maximum likelihood
estimates of lln and rln can be found from data by taking
the arithmetic mean and standard deviation of the log-
transformed data:

l̂ln ¼
P

ilnðxiÞ
N

ð13Þ

r̂ln ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðlnðxiÞ � l̂lnÞ2

N � 1

s
ð14Þ

where the data are denoted by the xi and N is the number of
data points. For the log–normal distribution, 68.3% of the
probability mass lies within the interval [exp(lln�rln),
exp(lln+rln)] and similar confidence intervals can be found
at other levels (Limpert et al., 2001). A Monte-Carlo proce-
dure was used to incorporate measurement error into esti-
mates of the log–normal parameters (see below).

For the purpose of measuring goodness-of-fit (e.g., be-
tween a data-set and the maximum likelihood log–normal
distribution) we chose the non-parametric Kolmogorov–
Smirnov statistic which is defined as the maximum distance
between two cumulative distributions. Further details can
be found in Press et al. (1992).

We took a twofold approach to assess the degree of
association between categorical variables and quantitative
variables: first, we binned the quantitative variable (thus,
forming a categorical variable) and performed a contin-
gency table analysis. Second, we performed analysis of var-
iance (ANOVA) (Snedecor and Cochran, 1989) on the
quantitative data using the categorical data as the treat-
ments. ANOVA is dependent on the assumption of homo-
geneous variance among the treatments; therefore, since we
found our best-fit parameters to possess a structure of
constant percent error, we performed ANOVA on log-
transformed data.

The most familiar measure of association between two
quantitative variables is Pearson’s correlation coefficient.
This measure has, however, some deficiencies for our
purposes. First, calculation of the statistic references a
parametric (usually, linear) model and we are not in a
position to make such assumptions about the data in our
compilation. Second, statements concerning the statistical
significance of Pearson’s correlation coefficient with a mod-
erate number of data points (roughly 500 > N > 10) require
the assumption that the data are drawn from a binormal
distribution, which, given the heteroscedasticity observed
in our compilation, is an assumption that cannot be
supported.

Instead of Pearson’s correlation coefficient, we chose to
use Spearman’s rank-order correlation coefficient
(Hollander and Wolfe, 1973). The rank-order correlation
coefficient is calculated by ranking the data in ascending
order (assigning ties the mean value of the ranks that they
span) and then calculating the Pearson’s correlation coeffi-
cient using the ranks in place of the original values of the data:

rS ¼
P

iðRi � RÞðSi � SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðRi � RÞ2

P
iðSi � SÞ2

q ð15Þ

where the Ri and Si are the ranks and R and S denote the
average ranks. Like Pearson’s correlation coefficient, rs

ranges from negative one to positive one with negative
one indicating a strong inverse association, zero indicating
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no association and positive one indicating a strong direct
association. Any association that is monotonically increas-
ing or decreasing will be identified by rs and, most impor-
tantly, the statistic:

t ¼ rS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

1� r2
S

s
ð16Þ

is distributed approximately as a Student’s distribution with
N � 2 degrees of freedom.

When two variables have a statistically significant rank-
order correlation, it should be possible to fit the data with a
parametric model. When doing so, it is necessary to take
into account the error structure for the dependent variable.
In the cases considered here, the dependent variable is al-
ways a rate parameter found by fitting the original time-
series concentration data and the errors are the estimated
uncertainties generated by the time-series fitting procedure.
These errors are normally distributed but heteroscedastic
(see Figs. 2B and 3B below). As mentioned above, the mea-
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Fig. 2. (A) Cumulative distribution of kzo: the dotted region
represents zero-order data with a lag, the hashed region represents
zero-order data without a lag, and the blank region represents
mixed-order data. (B) Uncertainties on kzo plotted against kzo: (D)
zero-order data with a lag; (h) zero-order data without a lag; (s)
mixed-order data.
surements themselves frequently follow a log–normal distri-
bution. The log–normal distribution is not the error
distribution. Rather, it represents the cumulative and deter-
ministic effects of the underlying meta-data. The error—
which follows a normal distribution—should be thought
of as being superimposed on the log–normal distribution.

The complicated structure of the data presents a prob-
lem for parametric fitting. On one hand, the normally dis-
tributed and heteroscedastic measurement errors suggest
weighted least-squares regression (Seber and Wild, 2003).
On the other hand, the log–normal distribution of the
measurements suggest un-weighted regression of log-
transformed data, a procedure which is inconsistent with
the normally distributed measurement errors (Miller,
1984). The most direct solution to this problem is a
Monte-Carlo approach wherein un-weighted regression is
performed on a number of log-transformed synthetic
data-sets, where each synthetic data-set is drawn from a
normal distribution based on the original data and the asso-
ciated errors (Bandstra and Brantley, 2008). We used this
Monte-Carlo based fitting approach with 100 iterations
for estimating log–normal parameters (lln, rln) and for fit-
ting rate data and rate constant data as a function of the
concentration of cells, [Cells], and Mn available for reduc-
tion, [Mn]total. The resulting parameter distributions were
checked for normality visually and by calculating the skew.
For all of the cases where the model fit the data well, the
magnitude of the skew was less than 1.
3. RESULTS AND DISCUSSION

3.1. Guide to compiled data

Tables EA-1-1 and EA-1-2 in Electronic Annex contain
both the raw time-series data and the best-fit rate parame-
ters. Each entry in Table EA-1-1 consists of a reference to a
data-set, the time-series, the best-fit parameters, and ele-
ments of the corresponding covariance matrix. The refer-
ence, which points to the bibliography at the end of Table
EA-1-2, includes that paper, figure, and another identifying
note allowing the source of each data-set to be uniquely
identified. The reference line also indicates which model
was used to fit the data. Further instructions for extracting
and using the data are provided in Electronic Annex.

3.2. Distribution of model type

The model type that best fit each data-set is a category
variable. With three possible reaction orders (zero, first,
and mixed) and the possibility of a lag, there are six possible
categories. Table 2 shows that the number of data-sets fall-
ing into each category decreases from zero-order to first-
order to mixed-order. It is interesting that both the zero-
and first-order data-sets are characterized by both lag and
no-lag behavior; however, there were no mixed-order
data-sets exhibiting a lag. Almost the same number of
data-sets exhibit an asymptote in reduced Mn concentra-
tion as not (32 with an asymptote, 39 without).

The preponderance of data-sets exhibiting some sort of
zero-order region (i.e., the zero-order data-sets plus the
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Table 5
v2 and mutual information calculations for several model-type/
quantitative meta-data pairs.

Meta-data Partition of model
type

v2 Stat. sig. U(y|x)

[Cells] Model 51.3 1.4 � 10�4 0.41
Lag 29.0 2.4 � 10�5 0.63
Order 21.0 2.1 � 10�2 0.26
Plateau 11.1 5.0 � 10�2 0.20

[Donor] Model 25.9 1.1 � 10�3 0.20
Lag 17.9 1.3 � 10�4 0.32
Order 7.02 1.3 � 10�1 0.07
Plateau 2.47 2.9 � 10�1 0.04

[Mn]total Model 57.5 1.4 � 10�6 0.33
Lag 39.4 5.9 � 10�8 0.50
Order 14.3 7.3 � 10�2 0.14
Plateau 11.7 1.9 � 10�2 0.15

Surface
area

Model 30.1 2.0 � 10�4 0.32
Lag 21.0 2.8 � 10�5 0.45
Order 9.39 5.2 � 10�2 0.14
Plateau 3.50 1.7 � 10�1 0.06
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mixed-order data-sets) indicates that the conditions favored
by experimentalists generally supply an excess of both elec-
tron donor and acceptor at the beginning of the experiment
(e.g., Gaudy et al., 1971; Lovley and Phillips, 1988; Myers
and Nealson, 1988b; Kieft et al., 1999; Fredrickson et al.,
2002). It is tempting to interpret the greater number of
data-sets exhibiting an asymptote as indicative of experi-
ments often being terminated prior to or exactly at the
point of exhaustion of an essential ingredient (e.g., before
all the Mn is reduced); however, we did not analyze this
possibility.

The lag in our kinetic model is not derived from any sort
of reaction mechanism, so the interpretation of the rough
equivalence between the numbers of data-sets exhibiting a
lag and those not exhibiting a lag is unclear. It is possible,
however, that the lags are frequently caused by the culture
preparation method, in which case the data presented here
would indicate that experimentalists are largely unsettled
with respect to the method of growing and harvesting
DMRBs for use in kinetics experiments. To our knowledge,
a systematic study of the effect of culture preparation meth-
ods on Mn reaction kinetics has not appeared in the litera-
ture; several studies have, however, examined the effects of
culture preparation on protein expression (Beliaev et al.,
2002, 2005; Tang et al., 2007; Elias et al., 2008).

3.3. Correlations between model type and meta-data

The observations described above hold, with a few
exceptions, when the model-type data are partitioned by
either categorical (Table 2) or quantitative meta-data
(Table 4). The exceptions can be identified most readily
by examining the correlation statistics in Tables 3 and 5.
Table 3 shows v2, the associated statistical significance,
and U(y|x) for model-type data partitioned by categorical
meta-data (i.e., the data shown in Table 2). Table 5 shows
the same statistics for model-type data partitioned by quan-
titative meta-data (i.e., the data shown in Table 4). In both
cases we have computed the statistics based on the five
distinct model types indicated in Tables 2 and 4 and, also,
with three possible ways of lumping the model types:
(i) with/without a lag; (ii) reaction order; and (iii) with/
without an asymptote.

As discussed in Section 2, v2 is a measure of association
between category variables with large values of v2 indicat-
ing a strong association. Most of the meta-data/model-type
pairs show a statistically significant correlation at greater
than the 99% level. This is consistent with the conclusion
that the type of model that best fits each data-set is depen-
dent on the way in which the experiment was conducted.
An exception is when the model types were lumped accord-
ing to the existence of an asymptote. In this case, the rela-
tionships with the meta-data typically show lower
significance levels (between 15% and 99%). This indicates
that the existence of an asymptote is largely independent
of the meta-data; an unsurprising result since any closed
system will eventually approach an asymptote as equilib-
rium is established.
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Although model type is found to correlate with most of
the meta-data, the relationships are weak. This can be seen
in the values of U(y|x), whose absolute value varies from
zero to one. The strongest relationship (with U = 0.63) is
between the existence of a lag and the concentration of cells
(see Table 5). The reason for this relatively strong relation-
ship can be seen in Table 4, where no lags occur for
[Cells] P 1010 cells L.

It is interesting to note that for all the meta-data fields
except one (the extraction method), the strongest correla-
tion is found with the existence of a lag. This observation
indicates that the existence of a lag is the kinetic feature that
is most sensitive to the manner in which an experiment was
performed. When H2 was used as the electron donor, for
example, no lags were observed, while lags were observed
in most of the experiments where acetate was used as the
electron donor. Similarly, when the total Mn concentration
was large, few lags were observed relative to when [Mn]total

was small.
The result of many statistically significant but weak cor-

relations between the model type and the meta-data is con-
sistent with the multi-factorial character of this data-set.
No single meta-data field uniquely determines the type of
kinetic behavior that is observed. This is amplified by the
correlations found between model type and the paper in
which the data were published (see Table 3) which were
among the strongest correlations that we found. Experi-
mentalists typically maintain a highly consistent set of
meta-data (i.e., experimental conditions) throughout a pa-
per. Each reference is, therefore, a de-facto lumped meta-
data field that accounts for at least some of observed
variability.

3.4. Distribution of model parameters

There are three parameters in the zero-order model
(kzo, tlag, and [Mn]0), four in the first-order model (kfo, tlag,
[Mn]0, and [Mn]1), and five in the mixed-order model
(Vmax, K1/2, tlag, [Mn]0, and [Mn]1). The cumulative distri-
butions of kzo and kfo are shown in Figs. 2A and 3A, respec-
tively, along with a histogram of the parameter values.
Note that the abscissa is in log format. We have also repre-
sented the mixed-order data in these figures by calculating
an equivalent kzo and kfo from Vmax and K1/2 (see Section 2).

The cumulative distributions of both kzo and kfo follow a
sigmoidal curve when plotted in semi-log format. This
behavior is characteristic of distributions with support only
on the positive numbers and a right-hand tail that decays at
Table 6
Descriptive statistics for distributions on fitted model parameters.

Data larith rarith xmed

kzo (mM h�1) 0.0778 0.165 0.00842
kfo (h�1) 67.0 251 0.0682
tlag

b (h) 22.5 20.4 19.0
[Mn]inf (mM) 3.08 6.12 0.486
Init. rate (mM h�1) 0.0679 0.128 0.0123

a Excluded the three points with kfo > 10 h�1 to avoid leveraging prob
b Excluded all zeros from the calculations.
an exponential rate. Some well-known distributions of this
type include the Gamma, Weibull, and log–normal distri-
butions. It is notable, given the frequency with which
power-law distributions are applied to biogeochemical data
(Birdi, 1993; Clark et al., 1995; Turcotte, 2002; Hondzo
et al., 2005), that the observed behavior is inconsistent with
this type of distribution. Maximum likelihood estimates of
the parameters for the log–normal distribution are given in
Table 6. In addition to the parameters for the rate constant
distributions, we have included parameters for the distribu-
tions of tlag, [Mn]1, and the initial rate, all of which have
cumulative distributions shaped similarly to those of the
rate constants (see Figs. EA-1-1 and EA-1-2 in Electronic
Annex). In all cases, the maximum likelihood log–normal
distribution generates a good fit to the data as measured
by the Kolmogorov–Smirnov statistic.

What can be said, then, concerning the best estimate of
the rate of bacterial manganese reduction (the best estimate,
that is, without any knowledge of the meta-data)? First, the
arithmetic mean is not a good measure of central tendency.
Note the order of magnitude difference between the means
and medians in Table 6. This is due to the positive skew of
the distributions. Second, since the log–normal distribution
accurately describes the data, elln should be a good measure
of central tendency. In fact it is; the value of elln closely cor-
responds with the median value for each of the parameters
in Table 6. The best estimate is, therefore, the median of the
log–normal distribution, elln . In a similar manner, these re-
sults indicate that confidence intervals for rate parameters
should be drawn from the log–normal distribution rather
than calculated from the sample variance. (Confidence
intervals for the log–normal distribution can be found by
exponentiation, see Section 2.)

Fitting models to time-series data generates both esti-
mates of the model parameters and estimates of the uncer-
tainty on each model parameter. It is important to
understand the error structure associated with estimated
model parameters in order to use the parameters correctly.
The uncertainties for rate data commonly scale with the
rate (or rate constant). This form of heteroscedasticity is
evident in Figs. 2B and 3B where the estimated standard
errors of kzo and kfo, respectively, are seen to increase in
direct proportion to the rate constant. The average percent
errors for kzo and kfo as well as for other model parameters
(which also exhibited this form of heteroscedasticity, see
Figs. EA-1-1 and EA-1-2 in Electronic Annex) are reported
in Table 6. The percent errors, ranging from 7% to 34%, are
small relative to ranges of the parameter distributions. The
lln rln K–S (stat. sig.) Avg. percent error

�4.94 2.25 0.119 (0.467) 0.0720
�2.29 3.26 0.201 (0.132) 0.335a

2.50 1.45 0.145 (0.392) 0.226
�0.552 1.75 0.211 (0.189) 0.0707
�4.27 1.96 0.0627 (0.935) 0.112

lems caused by these points.
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parameter uncertainties are, therefore, not important when
estimating the rate of bacterial manganese reduction; when
analyses are performed on the fitted parameters (e.g., exam-
ining for correlations between rates and meta-data as we do
below), however, the error structure must be taken into
account.

It is interesting to note differences in the rate distributions
based solely on the best-fit model type. For both kzo and kfo,
rate constants from data that did not exhibit a lag were
greater than rate constants from data that did exhibit a lag
(though, the statistical significance of the difference is fairly
weak in both cases: for the zero- and first-order cases, respec-
tively, the K–S statistics are 0.47 and 0.48 with significance
levels of 0.02 and 0.12). The difference is unsurprising since
we had previously found the existence of a lag to be linked
with lower cell concentrations and one would expect these
conditions to produce slower rates. In addition, the rate con-
stants estimated from the mixed-order model were greater
than those obtained using the zero- and first-order models,
respectively. (The differences in this case are statistically sig-
nificant: K–S statistics of 0.612 and 0.53 with significance lev-
els of 2 � 10�3 and 0.018.) It is not intuitive why this should
be the case; though, since there are only 10 mixed-order cases
in our compilation, it seems unlikely that any hypotheses
could be tested with this data-set.
3.5. Correlations between initial rates and meta-data

The distributions of model parameters described above
are, presumably, due to the differences in the way each under-
lying experiment was performed. ANOVA calculations per-
formed on log-transformed initial rates parsed according to
the same meta-data categories used in Table 2 showed signif-
icant treatment effects (at levels >99%) for each of the four
categories. Tests for pairwise treatment effects (Tukey HSD
and Newman–Keuls) within each meta-data category like-
wise indicate differences in the rate due to the meta-data with
a few notable exceptions: (i) the data with H2, lactate, and
formate as the electron donor are not significantly different
from one another; (ii) the data with acetate as the donor
are not significantly different from the data with succinate
as the donor; and (iii) the data with HCl extraction, CuSO4

extraction, and no extraction are not significantly different
from each other. The full ANOVA reports are available in
Table EA-1-3 in Electronic Annex.

The ANOVA results demonstrate that the type of micro-
organism and type of electron acceptor strongly influence
the rate of reaction, while the donor type and extraction
method have, at most, a weak influence on rates. In fact,
the higher median rates for data with either H2, formate,
Table 7
Maximum likelihood estimates of log–normal parameters and Spearman’
initial rate data parsed by the reaction order best describing the data. U

lln rln [Cells] [D

All data �4.27 1.96 0.677 (1.3 � 10�10) �
Zero-order data �5.76 2.00 0.697 (1.1 � 10�4) �
First-order data �4.36 2.11 0.774 (3.1 � 10�3) �
Mixed-order data �2.67 1.72 0.454 (0.19) �
or lactate as the donor, as compared to data with either ace-
tate or succinate as the donor, coincides with the former
data being dominated by relatively high [Cells] and [Mn]total

and the latter being dominated by relatively low values of
those variables. The lack of effect due to the type of donor
is consistent with the concentration of donor being present
in excess for most experimental designs (e.g., Lovley and
Phillips, 1988; Myers and Nealson, 1988b; Kieft et al.,
1999; Fredrickson et al., 2002).

Table 7 shows Spearman rank-order correlation coeffi-
cients between initial rates and four of the quantitative
meta-data variables ([Cells], [Donor], [Mn]total, and Surface
Area), with statistically significant relationships underlined.
The top column in Table 7 is for all the data treated to-
gether. In this case, statistically significant, but weak corre-
lations exist between initial rate and cell concentration,
donor concentration, and total Mn. That rates should in-
crease with [Cells] and [Mn]total is intuitive (Liu et al.,
2001a; Burgos et al., 2003); our results also indicate, how-
ever, that rates are statistically independent of Surface Area
and that they decrease with [Donor]. We discuss the reason
for this below.

The subsequent columns in Table 7 show correlation
coefficients for initial rates parsed by the reaction order that
best described the data. The correlations of initial rate with
[Cells] and [Mn]total are preserved when the data are so
parsed. These correlations are also broadly preserved
when the initial rate data are parsed by categorical meta-
data (see Table EA-1-4). Plotting initial rates vs. [Cells]
and [Mn]total (see Fig. 4A and B, respectively) suggests
patterns that are consistent with hyperbolic rate equations
(Liu et al., 2001b; Roden, 2008). Monte-Carlo based
log–normal regression of such an equation gives the curves
shown in Fig. 4A and B:

init: rate ¼
ð0:0129� 0:007Þ mM

h ½Cells�
ð3:57� 1010 � 2:5� 1010Þ 1

L
þ ½Cells�

init: rate ¼
ð0:0318� 0:0106Þ mM

h ½Mn�total

ð0:00196� 0:0001ÞMþ ½Mn�total

It is noteworthy that most of the rates fall above the Shewa-

nella + solid Mn data (circles with dots in Fig. 4) indicating
that these experiments represent a lower bound for the rate
of bacterial Mn reduction.

As noted above, correlation analyses on the lumped ini-
tial rate data indicate an inverse relationship between rate
and [Donor]. Parsing the data by reaction order in Table
7 partially diminishes this relationship; furthermore, when
the initial rate data are parsed by the type of donor, signif-
icant correlations are not found (see Table EA-1-4). This is
s rank-order correlations (statistical significance in parentheses) for
nits for initial rates are mM h�1.

onor] [Mn]total Surface area

0.553 (3.9 � 10�7) 0.583 (2.9 � 10�11) 0.292 (0.025)
0.441 (0.027) 0.522 (6.5 � 10�4) 0.638 (1.1 � 10�3)
0.709 (4.5 � 10�3) 0.678 (5.3 � 10�4) 0.399 (0.11)
0.709 (0.049) 0.557 (0.094) N/A
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because each type of donor was used almost exclusively at a
single concentration and, therefore, these data cannot be
used to establish a trend between rate and [Donor]. (The
relationship, or lack thereof, can be examined further in
Fig. EA-1-3 in Electronic Annex.)

The lack of a statistically significant relationship be-
tween initial rate and surface area in Table 7 is surprising
since heterogeneous reactions rates typically scale directly
with available reaction sites on the surface, and since sur-
face area normalized behavior has been well documented
for bacterial iron reduction (Roden, 2008). Parsing initial
rates by reaction order gives a significant correlation with
surface area for the zero-order data, but not for the first-
order data. This result can also be seen in Fig. 4C where
initial rate is plotted against surface area. Fitting all the
data together with a power law shows only a mild upward
trend (the solid line in Fig. 4C), while the zero-order data—
highlighted in gray—are consistent with a surface area
normalized rate of 1.47 � 10�4 (mmol h�1 m�2) depicted
by the dashed line.

3.6. Best estimates of zero- and first-order rate constants

We have already noted that, when no recourse is made
to the meta-data, best estimates—and corresponding confi-
dence intervals—for the zero- and first-order rate constants
can be found by log–normal analysis (see Table 6). We
should, however, be able to improve our estimates of the
log–normal parameters using knowledge of the meta-data.

As discussed above, ANOVA results with (log-
transformed) initial rates indicate significant treatment
effects due to the type of micro-organism and type of elec-
tron acceptor used. It is, therefore, reasonable to expect the
distributions of kzo and kfo to depend on these categorical
meta-data. The first two columns of Tables 8 and 9 include
log–normal parameters for, respectively, kzo and kfo data
that have been parsed according to the type of micro-
organism and electron acceptor. These results further
demonstrate the conclusions drawn from the initial rate
ANOVA calculations so that, for example, if it is known
that solid Mn is serving as the sole electron acceptor in a
system then the best estimate of kzo—based on the data in
our compilation—would be a log–normally distributed
random variable with lln = �6.27 and rln = 2.11.

The last four rows of both Tables 8 and 9 pertain to rate
constant data that have been parsed by both the type of mi-
cro-organism and the type of electron acceptor (NB: the
enrichment culture data were all collected with solid Mn
as the electron acceptor). If it is known, for example, that
solid Mn is the sole electron acceptor and that the micro-
organisms are a strain of Shewanella, then the appropriate
log–normal parameters are lln = �6.24 and rln = 1.7. It is
interesting that the results obtained by parsing the data
according to both of these categorical meta-data are not
significantly different from the corresponding data parsed
only by the type of electron acceptor (based on F-tests with
log-transformed rate constants). This is a trivial result in
the case of either aqueous Mn or Mn + Other as the elec-
tron acceptor since these acceptors were only used with
Shewanella as the micro-organism. In the case of solid
Mn as the electron acceptor, however, the result indicates
that knowledge of the type of electron acceptor is more use-
ful for predicting rates than knowledge of the type of micro-
organism—at least, when comparing strains of Shewanella

to organisms that have been cultured from sediments and
soils (Liu et al., 2002). It would be interesting to make sim-
ilar comparisons with other well defined microbial strains;
unfortunately, Mn reduction data with other micro-
organisms are not available in sufficient numbers to make
such a comparison.

The correlation analyses of initial rate data discussed
above indicate that the rates depend on [Cells] and [Mn]total.
These quantitative meta-data, therefore, should also inform



Table 9
Best estimates of the first-order rate constant as a function of the meta-data.

Data-set Constant [Cells] dependent [Mn]total dependent Surf. area dependent

lln rln V (h�1) K (cells L�1) rln V (h�1) K (M L�1) rln A Pow rln

Total (32) �2.29 3.26 0.297 ± 0.065 (3.31 ± 1.4) � 109 3.76 0.114 ± 0.032 (7.41 ± 22) � 10�5 3.23 0.0387 ± 0.012 �0.0723 ± 0.087 1.74
Shewanella (21) �1.37 3.64 0.349 ± 0.091 (3.24 ± 1.1) � 109 3.61 0.257 ± 0.068 (1.08 ± 5.0) � 10�5 3.60 0.0706 ± 0.027 �0.135 ± 0.090 1.69
Enrichment culture (9) �3.76 1.07 2.90 ± 22 0.0878 ± 0.62 0.995 0.0257 ± 0.010 0.0605 ± 0.15 1.81
Solid Mn (15) �3.81 1.81 0.224 ± 0.16 (2.54 ± 3.3) � 1010 3.74 0.0240 ± 0.0062 (1.00 ± 5.6) � 10�5 1.85 0.0235 ± 0.0074 0.0288 ± 0.10 1.88
Aqueous Mn (6) 0.793 4.38
Mn + other (11) �2.02 3.04 0.132 ± 0.045 (6.62 ± 29) � 10�7 3.05 0.138 ± 0.043 (�4.28 ± 9.5) � 10�20 3.01 0.423 ± 0.24 �0.478 ± 0.15 1.64
She. + solid (4) �3.14 3.05 0.396 ± 0.22 (2.71 ± 3.0) � 1010 2.09

She. + aq. (6) 0.909 4.31
She. + oth. (11) �2.03 3.02 0.154 ± 0.037 (�7.84 ± 26) � 10�7 3.01 0.408 ± 0.22 �0.483 ± 0.13 1.64
Enrich. + solid (9) �3.84 1.17 0.0256 ± 0.010 0.0362 ± 0.14 1.81

Table 8
Best estimates of the zero-order rate constant as a function of the meta-data.

Data-set Constant [Cells] dependent [Mn]total dependent Surf. area dependent

lln rln V (mM h�1) K (cells L�1) rln V (mM h�1) K (M) rln A Pow rln

Total (49) �4.94 2.25 0.0105 ± 0.0020 (5.91 ± 43) � 105 3.84 0.0465 ± 0.023 (9.29 ± 6.9) � 10�3 1.92 (6.70 ± 3.0) � 10�4 0.586 ± 0.13 2.40
Shewanella (33) �4.75 2.39 0.0256 ± 0.0067 (1.61 ± 0.65) � 1010 2.33 0.0538 ± 0.021 (6.79 ± 4.6) � 10�3 1.93 (3.07 ± 2.7) � 10�4 0.752 ± 0.17 2.34
Enrichment culture (13) �5.90 1.44 (4.49 ± 2.6) � 10�3 (7.79 ± 16) � 10�4 1.45 (1.65 ± 1.1) � 10�3 0.326 ± 0.29 2.75
Solid Mn (35) �5.78 1.80 (3.67 ± 0.58) � 10�3 (2.28 ± 20) � 10�9 4.19 (8.14 ± 4.9) � 10�3 (1.23 ± 1.5) � 10�3 1.71 (6.74 ± 3.2) � 10�3 0.579 ± 0.19 2.68
Aqueous Mn (7) �1.61 1.12
Other + Mn (7) �4.20 1.12 0.0192 ± 0.0097 (6.36 ± 16) � 109 1.04 0.0183 ± 0.0063 (1.34 ± 3.4) � 10�3 1.04 0.0790 ± 0.26 0.00104 ± 0.35 2.03
She. + solid (19) �6.14 1.75 (9.79 ± 6.3) � 10�3 (2.27 ± 2.1) � 1010 1.92 (7.32 ± 5.6) � 10�3 (9.92 ± 15) � 10�4 1.69 (1.46 ± 0.96) � 10�4 0.914 ± 0.27 2.84
She. + aq. (7) �1.57 1.12
She. + oth. (7) �4.21 1.12 0.0179 ± 0.0074 (2.16 ± 5.1) � 109 1.09 0.0181 ± 0.0069 (1.33 ± 3.6) � 10�4 1.07 0.157 ± 0.80 �0.00043 ± 0.36 2.06
Enrich. + solid (13) �5.90 1.50 (4.37 ± 4.7) � 10�3 (1.28 ± 5.3) � 10�3 1.47 (1.56 ± 0.91) � 10�3 0.334 ± 0.25 2.74
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our best estimates of the rate constants. Log–normal anal-
ysis can be adapted to this end by treating exp(lln) as a
function of [Cells] and/or [Mn]total. Tables 8 and 9 show
the results of such an analysis using hyperbolic rate equa-
tions:

kx ¼ V max

½��
K1=2 þ ½��

where kx can be either the zero- or the first-order rate con-
stant and [�] represents either [Cells] or [Mn]total.

For some of the data-sets, there are too few points to
perform reliable analyses; these have been left blank in
Tables 8 and 9. For other data-sets, the analysis returned
a value of K1/2 that was smaller than the measured [Cells]
or [Mn]total; these cases have been printed in italics. A value
of K1/2 that is so small indicates that the observed rate con-
stants do not show a trend with the relevant concentration
variable. For both of these cases, the best possible estimate
of the rate constant is the log–normal distribution with no
concentration dependence. The case of kfo vs. [Mn]total
bears special mention in this regard since no trend was iden-
tified for these data regardless of the meta-data. This is con-
sistent with the fact that the first-order model already takes
account of the concentration of reducible Mn.

For the remaining data-sets, the effect of the concentra-
tion variables could be reliably extracted from the rate con-
stant data. If [Cells] or [Mn]total data are, therefore, known
for a system—or if a simulation is performed that treats
these concentrations dynamically—then the best estimate
of the rate constant should be evaluated taking these con-
centration data into account using a log–normal distribu-
tion with the concentration-dependent model parameters
given in Tables 8 and 9.

Tables 8 and 9 also show the results of log–normal
Monte-Carlo analysis with surface area as the independent
variable. Here, lln has been modeled with a power law
dependence on surface area ðkx ¼ A½Surf : Area�powÞ. The re-
sults are entirely consistent with our analysis of initial rates
in that kzo shows a broad dependence on surface area while
kfo does not. In general we have found [Mn]total to be a
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stronger predictor variable than surface area. These vari-
ables are, however, strongly covariant; therefore, our result
is likely due to the greater abundance and quality of [Mn]total

data rather than any mechanistic feature of the system.
Figs. 5 and 6 show, respectively, kzo and kfo plotted

against both [Cells] and [Mn]total. Also plotted on these
graphs are curves representing the median and outer limits
of the 68% confidence interval based on the model that we
judge to best represent the data as a whole (whose param-
eters are printed in bold in Tables 8 and 9). The median va-
lue is calculated as exp(lln) and the 68% confidence interval
is calculated as [exp(lln � rln), exp(lln + rln)]. With one
exception, we find treating all the data together to be a ro-
bust method for generating rate equations even though
there are statistically significant differences based on the
categorical meta-data. Even in the exception (the case of
kzo vs. [Cells]), it is only the two experiments performed
at very low [Cells] that prevent an accurate fit that includes
all the data. We find, therefore, that even though the partic-
ular details of an experiment do affect reduction rates—
even in a narrowly defined statistical sense—it is still possi-
ble to observe trends in the rate data at a broad level of
aggregation. The compilation of kinetics data and analyses
of these data in aggregate, then, offers a means for predict-
ing rates of environmentally relevant reactions.

The compilation of kinetics data also offers an avenue
for identifying new areas for research. Our results point
to gaps in the knowledge of factors that control the reaction
order and the existence of lag. We also see that the effect of
donor concentration on reduction rate has not been system-
atically examined. In addition, the data are sparse for
micro-organisms other than strains of Shewanella—and
especially so for experiments with measured concentration
of cells. New experiments would be warranted, therefore,
at lower donor concentrations and with a wider array of
micro-organisms.

Finally, the compilation of laboratory rates of Mn
reduction provide an opportunity for comparison with
observations in natural systems. Techniques have been pro-
posed for the determination of bacterial Mn reduction rates
in both groundwater (Istok et al., 1997) and marine sedi-
ments (Wang et al., 2008). Since these techniques require
knowledge not only of Mn concentrations but also the con-
centration of other electron acceptors and flow conditions,
the rates so determined contain several additional sources
of variability. Nevertheless, the surface area normalized
Mn reduction rates reported by D’Hondt et al. (2004)—
which vary between 2.5 � 10�8 (mmol m�2 h�1) and
6.96 � 10�5 (mmol m�2 h�1)—are generally consistent with
both our finding of the log–normal distribution of rates and
the average surface area normalized rate (for zero-order
data) in our compilation of 1.47 � 10�4 (mmol m�2 h�1).
Further comparisons of lab rates with field data are, how-
ever, clearly needed.
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